Pressemitteilung | MBI | 28-03-2022

Ein ultraschneller Röntgenblick in die elektronische Struktur von Photosäuren

Photosäuren sind Moleküle, die nach elektronischer Anregung ein Proton freisetzen und so den Säuregrad einer Flüssigkeit erhöhen.

Fig. 1: Förster-Zyklus einer Amin-Photosäure mit den elektronischen Grundzuständen S0 und den ersten angeregten Zuständen S1 der sauren (links) und basischen (rechts) Spezies. Die vier Stadien des Photosäureverhaltens in wässriger Lösung sind schematisch dargestellt. In der Mitte sind transiente Weichröntgenspektren dargestellt, die an 8-Aminopyren-1,3,6-trisulfonat (APTS) gemessen wurden. | Abb. MBI

Fig. 2: Simulierte Änderungen der Ladungsverteilung der APTS-Photosäure und der konjugierten Photobase, die in Änderungen der Mulliken-Ladungen und des elektrischen Dipolmoments bei elektronischer Anregung resultieren. | Abb. MBI

Die Pionierarbeit von Theodor Förster hat für solche Moleküle die direkte Beziehung zwischen der Wellenlänge der optischen Absorption und den Säureeigenschaften aufgezeigt, mit der die Erhöhung des Säuregrades im ersten elektronisch angeregten Zustand quantifiziert werden kann. Zugrundeliegende vollständige Beschreibungen der mikroskopischen Effekte, die das Photosäure-Phänomen erklären, sind jedoch seither spärlich geblieben. Ultraschnelle Röntgenspektroskopie, bei der die elektronische Struktur einer protonenliefernden Gruppe einer aromatischen Amin-Photosäure lokal untersucht wird, hat nun einen direkten Einblick in die Veränderungen der elektronischen Struktur ermöglicht. Die seit langem offene Frage nach der Photoazidität ist nun endlich geklärt: Die wichtigsten elektronischen Strukturänderungen finden auf der Basenseite des sogenannten Förster-Zyklus statt, während die Säureseite eine untergeordnete Rolle spielt.   

Photosäuren sind seit mehr als 70 Jahren bekannt. Theodor Förster war der erste, der die Beobachtungen der Absorptions- und Fluoreszenzspektren von Photosäuren korrekt beschrieb und die Positionen der elektronischen Übergänge, die zu optischen Absorptionsbanden führen, mit den erhöhten Säureeigenschaften von Photosäuren im elektronisch angeregten Zustand in Verbindung brachte. In den folgenden Jahrzehnten wurden zahlreiche Forschungsarbeiten durchgeführt, doch abgesehen von quantenchemischen Berechnungen von Photosäuremolekülen mittlerer Größe, die sich auf die intramolekularen elektronischen Ladungsverteilungsänderungen der protonenliefernden Anteile von Fotosäuren konzentrierten, blieben die mikroskopischen Erkenntnisse begrenzt. Einige dieser Studien haben - in Übereinstimmung mit früheren Vorschlägen, die auf physikalisch-organischen Prinzipien beruhen - gezeigt, dass die Auswirkungen der elektronischen Anregung auf der konjugierten Photobasenseite des Förster-Zyklus viel ausgeprägter sind (Abb. 1).

Scientists from the Max Born Institute in Berlin, Stockholm University, the University of Hamburg, Helmholtz-Zentrum Berlin, Ben-Gurion University of the Negev in Beersheva and Uppsala University, have now successfully pursued a novel combined experimental and theoretical approach to study the electronic charge distributions of photoacids along the four stages of photoacids provide direct microscopic insight into the electronic structural changes of the proton donating amine group of an aminopyrene derivative in aqueous solution. The K-edge X-ray absorption spectra of nitrogen atoms in the molecular structure were measured at the synchrotron BESSY II in transmission mode to locally probe electronic structure on ultrafast time scales. Together with quantum chemical calculations, such results provide a consistent picture of photoacid behaviour (Fig. 2): electronic charge distributions of the proton donating group are only minor on the photoacid side, but substantial on the conjugate photobase side. Yet the overall dipole moment change of the whole molecule is as important as the local charge distribution changes, hence solvation dynamics by the solvent water is the second important factor governing photoacidity.

Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle
Sebastian Eckert, Marc-Oliver Winghart, Carlo Kleine, Ambar Banerjee, Maria Ekimova, Jan Ludwig, Jessica Harich,  Mattis Fondell, Rolf Mitzner, Ehud Pines, Nils Huse, Philippe Wernet, Michael Odelius, and Erik T. J. Nibbering
Angew. Chem. Int. Ed. 2022, e202200709

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin
Nichtlineare Prozesse in kondensierter Materie
Dr. Marc-Oliver Winghart
Tel. 030 6392 1496
E-Mail marc-oliver.winghartmbi-berlin.de

Dr. Erik Nibbering
Tel. 030 6392 1477
E-Mail erik.nibberingmbi-berlin.de