Pressemitteilung | FBH | 24-02-2004

Ferdinand-Braun-Institut entwickelt neue Laserklasse

Ferdinand-Braun-Institut entwickelt neue Laserklasse

Der neue Diodenlaser aus dem FBH|Foto: FBH/schurian.com

 

Hochbrillante Lichtquellen für die Messtechnik und die Materialanalyse aus Adlershof

Das Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) in Berlin-Adlershof hat einen weltraumtauglichen Diodenlaser entwickelt, der zehnmal mehr Ausgangsleistung hat als bisherige Diodenlaser mit vergleichbaren spektralen Eigenschaften. Der Laser wird auf der Messe Laser-Optik-Berlin (LOB) Anfang März vorgestellt.

Die Neuentwicklung schließt eine wichtige Lücke. Bisher gab es im Wesentlichen zwei Klassen von Diodenlasern. Die einen sind hochbrillant - das heißt, sie strahlen in einem genau definierbaren Wellenlängenbereich -, haben aber eine geringe Ausgangsleistung von nur einigen tausendstel Watt (mW). Die anderen haben weitaus mehr "Power" (einige Watt), besitzen jedoch eine weit geringere Strahlqualität und spektrale Breite. Der FBH-Diodenlaser, ein so genannter Distributed-Feedback-Laser, erreicht nun eine Leistung von mehr als 0,3 Watt und weist eine enorme Brillanz auf. Letzteres ist entscheidend für Anwendungen in der Telekommunikation, aber auch in der Materialanalyse. Zum Vergleich: Laser in CD-Playern haben eine Leistung von 0,002 bis 0,005 Watt, also einige mW; ein CD-Brenner bringt es auf rund 50 mW.

Für die Raumfahrt interessant ist ein weiterer Aspekt. Denn mit kompakten, robusten und zuverlässigen Diodenlasern können Atome wie Cäsium und Rubidium angeregt werden. Das wird für die Atomuhren zwar schon lange genutzt, aber bisher waren die Anregungslaser sehr aufwendig in der Herstellung und mindestens faustgroß. Die Entwicklung aus dem FBH ist nur ungefähr daumengroß; der entscheidende Laserchip sogar kleiner als ein Streichholzkopf: 1,5 Millimeter lang, 0,1 Millimeter hoch und 0,3 bis 0,4 Millimeter breit. In zukünftigen Satelliten gestützten Positionssystemen (GPS) wird man solche Atomuhren einsetzen, deren Atome durch Diodenlaser angeregt werden.

Die Ausgangsleistung und die Brillanz konnten erhöht werden, weil es im FBH gelang, periodische Strukturen mit zirka 200 Nanometer Länge, so genannte Bragg-Gitter, in Hochleistungsdiodenlaser zu integrieren. Das kann man sich vorstellen wie Ackerfurchen. Unvorstellbar kleine Furchen freilich: 200 Nanometer sind 0,0002 Millimeter.

Die neue Technologie beruht auf dem exakt definierten kristallinen Schichtwachstum unterschiedlicher Kristallmaterialien im Nanometer-Bereich. In diese Schichten werden die "Furchen", das Bragg-Gitter, geätzt und in einem zweiten Schritt überwachsen - so als ob eine Schneedecke die Furchen zudeckt. Genau dieser zweite Schritt konnte durch die neuen Schichtstrukturen so gut ausgeführt werden, dass die hohen Leistungen auch mit großer Zuverlässigkeit möglich sind.

Der neue Laser erzeugt brillantes Licht mit gleichsam fein justierbaren Wellenlängen von 760 bis 980 Nanometer (rotes bis infrarotes Licht). Die Unschärfe der Wellenlänge (Linienbreite) des Lichts dieser Diodenlaser ist so gering, dass die Wellenlänge auf 7 Stellen hinter dem Komma angegeben werden kann. Wenn die Schwankungen der Stromversorgung und die Umgebungstemperatur hinreichend gering sind, ist es sogar möglich, diese Unschärfe um weitere zwei Kommastellen zu verringern.

Die Hauptanwendungen dieser Diodenlaser liegen in der Messtechnik und Materialanalyse. In der Messtechnik können damit räumliche Formen durch interferometrische Verfahren viel kostengünstiger vermessen werden als bisher. Eine weitere für die Forschung wichtige Anwendung ist die Erzeugung von Bose-Einstein-Kondensaten. Das sind neue Zustände der Materie, die nur durch spektral schmalbandige und dabei leistungsstarke Laser erzeugt werden können. Das sind gerade die Markenzeichen der neu entwickelten Diodenlaser.

Ein weiteres großes Anwendungsfeld, in dem diese Diodenlaser bald ältere größere Lasersysteme verdrängen werden und durch geringere Größe und niedrigeren Preis neue Felder erschließen werden, ist die Stoffanalyse. Strahlt man auf eine Substanz Licht einer Wellenlänge, so wird auch immer Licht anderer Wellenlängen erzeugt. Die Differenz der Wellenlängen entspricht dem "Fingerabdruck" der Substanzen. Da der Effekt relativ schwach ist, sind leistungsstarke Anregungsquellen erforderlich, deren Wellenlänge sehr genau bekannt und sehr reproduzierbar sein muss. Hier ergeben sich vielfältige Anwendungsmöglichkeiten in der Kontrolle für die Produktion, Medizin und Sicherheit.

Terminhinweis:

Die Messe und der Kongress "Laser-Optik-Berlin" finden am 3. und 4. März statt. Veranstaltungsort ist das Studio Berlin Adlershof (Studio G) in der Agastraße 20c. Öffnungszeiten: 9 bis 18 Uhr (3. März) und 9 bis 17 Uhr (4. März).

Das LOB-Programm im Internet.

Ansprechpartner:
Dr. Götz Erbert, Tel.: 030 / 6392-2656; mail