Pressemitteilung | IKZ | 07-12-2001

Innovationspreis für Berliner Kristallzüchter-Team

Neue Herstellungstechnologie für defektarme Galliumarsenid-Verbindungshalbleiter aus dem IKZ

Mit dem Innovationspreis 2001 Berlin/Brandenburgs wird am 7. Dezember ein Forscher-Team aus dem Berliner Institut für Kristallzüchtung (IKZ) ausgezeichnet. Die Wissenschaftler um Dr. Michael Neubert, Arbeitsgruppe Czochralski-Halbleiter, erhalten den Preis für die Entwicklung eines neuen Herstellungsverfahrens für defektarme Galliumarsenid-Kristalle.

Verbindungshalbleiter, wie Galliumarsenid (GaAs), Indiumphosphid (InP) oder Galliumphosphid (GaP), sind Basismaterialien für die Optoelektronik und Hochfrequenzmikroelektronik – zwei Anwendungszweige, in denen das Grundmaterial der Elektronik Silicium (Si) nicht oder nur schwer mithalten kann. GaAs findet man in der Infrarottechnik z.B. in Fernbedienungen, in Laserdioden für das Brennen und Abspielen von CDs. GaAs-Mikrochips sind das Herzstück der drahtlosen Kommunikation im Hochfrequenzbereich, sei es im Handy, in Funksatelliten oder bei der GPS-Navigation. Der Einsatz von GaAs-basierten Bauelementen wird auch in Zukunft, zum Beispiel bei der KFZ-Abstandsüberwachung, in Goßbildschirmen und Verkehrsampeln, für hohe Zuverlässigkeit und Einsparung von Energie sorgen. Das macht klar, warum sich der Umsatz dieses Materials in den letzten zehn Jahren weltweit verdoppelt hat.

Solche Bauelemente werden aus Kristallen hergestellt, die zunächst aus der Schmelze bei 1240 °C "gezüchtet" und danach für das Aufbringen der aktiven Mikrostrukturen in Scheiben zerlegt werden. Um eine hohe Ausbeute und Wirtschaftlichkeit zu erzielen, besitzen die Kristalle bereits beachtliche Ausmaße: Durchmesser bis zu 150 mm, Längen bis zu 300 mm, Gewichte über 25 kg. Ein Ende dieser Entwicklung ist noch nicht abzusehen. Gleichzeitig erhöhen sich aber auch die Anforderungen der Bauelementehersteller an die Kristallgüte, sodass die GaAs-Produzenten in Japan, den USA und Europa - hierzu gehört auch das international renommierte deutsche Unternehmen Freiberger Compounds Materials (FCM) GmbH – große Anstrengungen unternehmen, einen deutlichen Qualitätssprung zu erzielen.

Die besondere Herausforderung liegt auch darin, dass ein zweielementiger Verbindungshalbleiter viel schwieriger zu beherrschen ist als etwa das elementare Silicium. Hier setzten die Forschungen des Instituts für Kristallzüchtung an. Ihr Ziel: ein deutlich verbessertes Technologiekonzept, das in konventionellen Kristallzüchtungsanlagen verwendbar ist und zu besseren Kristalleigenschaften führt.

Innerhalb eines vom Bundesministerium für Bildung und Forschung (BMBF) und dem o.g. Industriepartner FCM geförderten Forschungsprojekts wurde dieses Ziel für Kristalle mit Durchmessern bis zu 100 mm erfüllt. Die Defektdichte wurde gegenüber dem konventionell gezüchteten GaAs deutlich reduziert. Zurzeit läuft die Entwicklung größerer Kristalle mit Durchmessern von 150 mm.

Die wichtigsten wissenschaftlich-technischen Innovationen des neuen Verfahrens sind: 1. der Kristall wächst innerhalb eines speziell entwickelten, gasdichten Innengefäßes in einem gegenüber dem konventionellen Verfahren sehr homogenen Temperaturfeld bei deutlich geringeren Temperaturdifferenzen 2. ein über eine separate Quelle realisierter Arsen-Gegendruck stabilisiert die Oberfläche des sehr heißen Kristalls, sodass er sich nicht zersetzen kann 3. bezüglich der Wärmeisolation, mechanischer Durchführungen in das Gefäß, einer gasdichten Wägung des Kristalls im Gefäß, der Steuerung und visuellen Überwachung des Prozesses wurden originelle ingenieurtechnische Leistungen erbracht.

Das Institut verfügt mit dieser Technologie über ein hoch entwickeltes, sehr leistungsfähiges Verfahren. Auch über die Anwendung bei GaAs hinaus erscheint die eingesetzte Züchtungstechnik vielversprechend für die Einkristallzüchtung von Substanzen mit flüchtigen Komponenten. Nicht zuletzt gelingt es mit dieser Technik sogar, auf die bei dem herkömmlichen Verfahren unumgängliche Abdeckschmelze zu verzichten und damit Kristalle mit speziellen Eigenschaften herzustellen. Dem Verfahren werden hervorragende Zukunftsperspektiven attestiert.

Kontakt:
Dr. Michael Neubert, Tel.: 030 / 63 92 3030; Email